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1. Introduction

One of the most interesting features of string theory is the appearance, in some cases, of

tachyons. Although much progress has been made in understanding the dynamics of open

string tachyons [1, 2], and (semi)localized closed string tachyons (for an incomplete list of

references see [3 – 13]), bulk closed string tachyons have remained a mystery.

Building on the success in the open string and localized closed string cases one can

formulate a natural two-part conjecture for bulk closed string tachyons: 1. The ground

state contains no degrees of freedom, and 2. solitons correspond to lower-dimensional

sub-critical closed string backgrounds.1

In [18] we investigated the second part of the conjecture for the bulk closed string

tachyon of the bosonic string. We claimed that a co-dimension one soliton solution of the

26-dimensional closed bosonic string theory describes the flat linear dilaton background

of the 25-dimensional sub-critical bosonic string theory. To obtain this we formulated

the problem in the low-energy effective theory of the tachyon, dilaton and graviton.2 To

specify the action we have to know the form of the tachyon potential. However some general

features of the soliton solution are independent of the specific potential.

The low energy effective theory of the gravity-dilaton-tachyon system in the closed

bosonic string (or the NSNS sector of the Type 0 superstring) is given in the string frame

by3

S =
1

2κ2

∫

dDx
√−g e−2Φ

(

−R − 4(∂µΦ)2 + (∂µT )2 − 2V (T )
)

, (1.1)

1Indirect evidence for this conjecture was given in the context of p-Adic strings by Moeller and Schn-

abl [14]. Consult [15] for a string field theory approach for the problem, and [16] for time dependent

solutions. See also [17] for a discussion of bulk closed string tachyon condensation in super-critical string.
2See [19] for similar calculations including the B field
3Note that the metric notations in this note are (+,−, . . . ,−) and differ from [18].
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where V (T ) = 1
2m2T 2+· · · . We can look for co-dimension one solitonic solutions supported

by this action. These solutions are specified by a static tachyon profile T̄ (xD−1), such that

T̄ (0) = 0 and T̄ (xD−1) approaches a minimum of V (T ) as x1 → ±∞. If there is a unique

minimum, the soliton is a lump, and if there are degenerate minima the soliton is a kink.

Further, assuming a simple form for the metric (µ, ν = 0, 1, . . . ,D − 2),

ds2 = −dx2
D−1 + a(xD−1)

2ηµνdxµdxν , (1.2)

one can show that the metric in the string frame should be flat, i.e. a′ = 0, and that the

dilaton profile has to have the following form (xD−2 is a direction transverse to the soliton)

Φ̄(xD−1, xD−2) = D(xD−1) + qxD−2, (1.3)

for some q.4 The dilaton must therefore be linear in the soliton ”world-volume” coordinates.

In this case the equations of motion reduce to

2D′′ − (T̄ ′)2 = 0 (1.4)

T̄ ′′ − 2D′T̄ ′ − V ′(T̄ ) = 0 (1.5)

D′′ − 2(D′)2 − 2q2 − V (T̄ ) = 0 . (1.6)

This is an over-determined set of equations for the two fields and the constant q. Consis-

tency of these equations and the assumption that there is only one solitonic solution (or

a discrete set of solutions) supported by this system fixes the value of the constant q in

terms of the parameters of the tachyon potential.

Moreover, one can show that the qualitative behavior of the dilaton profile in the di-

rection of the soliton, xD−1, is generic and does not depend on the details of the tachyon

potential. Interpreting the tachyon equation of motion above as an equation for a point

particle in inverted potential, −V , with a friction term given by −2D′, and noting that

the second derivative of the dilaton, D′′, should be non-negative, one concludes that the

dilaton has to grow as xD−1 → ±∞. This implies that the Einstein frame metric van-

ishes away from the core of the soliton, and the space-time effectively localizes on the

(D − 1)-dimensional worldvolume of the soliton. The whole picture is consistent with the

identification of the soliton as the flat linear-dilaton background of the (D−1)-dimensional

string theory.

In this note we will analyze fluctuations around these solitons. For the soliton to

describe a lower dimensional string theory one expects that the fluctuation spectrum will

still contain a tachyon, since a lower dimensional string theory is still unstable. However,

the mass squared of the tachyon living on the soliton should decrease in absolute value

as the number of dimensions decreases. In what follows we will find that the mass of

the would-be tachyon living on the soliton is essentially non tachyonic in the low energy

effective field theory approximation.

This note is organized as follows. In section 2 we will discuss fluctuations around

solitons for an unspecified, generic class of tachyon potentials. In section 3 we will discuss

4Essentially, the equations of motion require that the product qa′ will vanish. However, as we want to

interpret the soliton as the sub-critical string we take the solution with non-vanishing linear dilaton profile.
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generic features of the fluctuations and we will illustrate these features on a simple model

of quadratic tachyon potential in section 4. In section 5 we will summarize and discuss the

results. Finally, in appendix A we will discuss the quadratic tachyon potential neglecting

the gravity fluctuations.

2. Fluctuations on the solitons

We will analyze the system of a graviton, dilaton and a scalar field which we will refer to

as a tachyon although it does not have to posses a negative mass squared.5 The action in

the Einstein frame is

S =
1

2κ2

∫

dDx
√−g

[

−R + M IJ∂µΦI∂
µΦJ − 2Ṽ (ΦI)

]

. (2.1)

We have defined

M11 =
4

D − 2
, M22 = 1, M12 = M21 = 0, Ṽ (ΦI) = e

4

D−2
Φ
V (T ). (2.2)

Φ1 = φ1 + ϕ1 is the dilaton and Φ2 = φ2 + ϕ2 is the tachyon. The φi are the background

configurations of the fields and ϕi are the fluctuations of the fields around that background.

We will denote

xD−1 = x, xD−2 = y.

The prime denotes a derivative with respect to x, and the dot denotes a derivative with

respect to y. In all the models we deal with [18]

φ2 = φ2(x),
2

D − 2
φ1 = A(x) + B(y), B(y) =

2q

D − 2
· y,

i.e. the dilaton background is linear in one of the directions, y, and has some profile in

direction x. The tachyon background depends only on the coordinate x. General metric

fluctuations in our background (1.2) are given by

ds2 = e−2S(ηµν + 2hµν)dxµdxν , (2.3)

where S = A + B. Define the fluctuations of the Christoffel symbols

Γρ
νµ = Γ(0)ρ

νµ + Cρ
νµ. (2.4)

These are calculated with an ansatz above to give

Γ(0)ρ
νµ = −∂µSδρ

ν − ∂νSδρ
µ + ∂ρSηµν , (2.5)

Cρ
νµ = ηρα(∂µhνα + ∂νhµα − ∂αhµν) + 2∂ρShµν − 2∂αShραηµν

In what follows we raise and lower indices with the flat metric. The fluctuations of the

Ricci tensor and the stress tensors are given by

δRµν =Dα(∂µhνα+∂νhµα)−Dα∂αhµν−∂µ∂νh+∂ρS∂ρhηµν−2Dρ(∂αShρα)ηµν−
4

D−2
V hµν

δT̃µν =MIJ∂µφI∂νϕJ + MIJ∂νφI∂µϕJ − 2

D − 2
ηµνVIϕI −

4

D − 2
V hµν (2.6)

5Consult [20] for similar calculations.
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where we have defined

T̃µν = Tµν − 1

D − 2
gµνT, Dα = ∂α − (D − 2)∂αS.

To solve for the spectrum of fluctuations on the soliton we have to solve the Einstein

equations of motion,

δRµν = δT̃µν ,

as well as the equations of motion for the tachyon and the dilaton. We partially fix the

gauge by setting (index i runs over 0, 1, . . . ,D − 3)

hix = 0, hxy = 0, ∂ihyi = 0,

[

¤ = ∂i∂i, h̃ ≡ hi
i

]

. (2.7)

The equation of motion for the fluctuations of the tachyon and the dilaton in this gauge

are given by

MIJ

{

Dρ∂ρϕJ−2hxxDx∂xφJ−2hyyDy∂yφJ−2

[(

1

2
h′+h′

xx

)

φ′
J +

(

1

2
ḣ+ḣyy

)

φ̇J

]}

=−VIJϕJ .

The quantities appearing in the above equation are given by

V1 =
4

D − 2
V, V2 = V ′, V11 =

(

4

D − 2

)2

V, (2.8)

V22 = V ′′, V12 = V21 =
4

D − 2
V ′.

The background field equations (1.5), (1.6), can be written as

VI − MIJ(φ′′
J + φ̈J) + (D − 2)MIJ (A′φ′

J + Ḃφ̇J) = 0. (2.9)

We define the following useful quantities

Ry ≡ Dyhyy − ḣ − MIJ φ̇IϕJ +
1

D − 2
˙̃
h , (2.10)

Rx ≡ Dxhxx − h′ − MIJφ′
IϕJ +

1

D − 2
h̃′ .

Using the definitions above the following components of the Einstein equations are given

by

{x, y} : −
(

Ṙx + R′
y

)

= ∂x∂y

[

h − 2

D − 2
h̃

]

, (2.11)

{x, i} : ∂iRx = −Dαh′
iα +

1

D − 2
∂ih̃

′,

{y, i} : ∂iRy = −Dαḣiα +
1

D − 2
∂i

˙̃
h + Dα∂αhiy.

One can verify that the two scalar equations (2.8) imply that Rx = Ry = 0. Thus, the

{x, i} equation becomes

− Dαh′
iα +

1

D − 2
∂ih̃

′ = 0. (2.12)

– 4 –
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We can use part of the residual gauge symmetry to set also

− Dαhiα +
1

D − 2
∂ih̃ = 0. (2.13)

Plugging this into the {i, y} equation we obtain

Dρ∂ρhiy = 0. (2.14)

Note that this is a simple laplacian of a scalar in our curved background. Using the above

remaining components of the Einstein equations are

{x, x} : Dxh′
xx−

1

2

[

Dρ∂ρhxx+h′′+∂ρS∂ρh
]

−MIJφ′
Iϕ

′
J−

VIϕI

D−2
+Dx(A

′hxx)+Dy(Ḃhyy)=0,

{y, y} : Dyḣyy−
1

2

[

Dρ∂ρhyy+ḧ+∂ρS∂ρh
]

−MIJ φ̇I ϕ̇J−
VIϕI

D−2
+Dx(A′hxx)+Dy(Ḃhyy)=0,

{i, j} : −Dρ∂ρhij +

[

2VIϕI

D − 2
+∂ρS∂ρh−2Dx(A′hxx)−2Dy(Ḃhyy)

]

ηij = 0. (2.15)

Projecting on the traceless ( h̃ij = hij − 1
D−2 h̃ ηij ) part we get again

Dρ∂ρh̃ij = 0. (2.16)

This equation along with (2.14) describe the tensor and the vector excitations on the

soliton. For instance, the lowest component of (2.16) describes a 25-dimensional graviton

confined to the soliton world-volume.

Further, using (2.15) one can compute the following

D − 4

D − 2
{i, i} − {x, x} − {y, y} = 0, → ¤

[

h − 2

D − 2
h̃

]

= 0, (2.17)

in agreement with the first equation in (2.11). We can use the remaining residual gauge

symmetry to set h− 2
D−2 h̃ = 0. Note that the above relation implies that the three scalars,

hxx, hyy and h, are linearly dependent. To find the fluctuations of the scalar modes we

define

Q = (D − 2)hyy + h̃, P = (D − 2)hxx + h̃. (2.18)

From here using (2.10) and (2.15) we get simple equations for P and Q

Dρ∂ρQ = 0, (2.19)

Dρ∂ρP = −2
φ′′

2

φ′
2

P ′ − 2
φ′′

1φ′
2 − φ′′

2φ
′
1

φ′
2

[

2P +
1

q
Q̇ − 2Q

]

. (2.20)

In what follows we will be interested in the scalar spectrum on the soliton. To summarize,

the tensor and the vector fluctuations on the soliton are given in terms of a simple laplace

equation in our curved background, equations (2.14) and (2.16). The spectrum of scalar

fluctuations consists of two independent fields, which we can choose to be P and Q. Thus

to obtain the scalar spectrum of the soliton we have to solve (2.19) and (2.20).

– 5 –
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3. General features of the spectrum

In this section we will derive some general features of the scalar spectrum of fluctuations.

First, let us denote

Q̂ =

[

1

q
∂y − 1

]

e−φ1−q yQ, P̄ =
1

φ′
2

e−φ1−q yP, (3.1)

HP = −∂2
x +

{(

φ′′
2

φ′
2

− φ′
1

)2

−
(

φ′′
2

φ′
2

− φ′
1

)′

+ 2φ′′
1 + q2

}

,

HQ = −∂2
x +

{

(φ′
1)

2 − φ′′
1 + q2

}

, F = 2

(

φ′
1

φ′
2

)′

.

Using these definitions the equations (2.19) and (2.20) take the following form

¤P̄ − ¨̄P = −HP P̄ − FQ̂, (3.2)

¤Q̂ − ¨̂
Q = −HQQ̂.

To diagonalize these we write

P̂ = P̄ + L̂Q̂, (3.3)

where L̂ is a linear operator that we demand to satisfy

F = HP L̂ − L̂HQ. (3.4)

In general this equation for L̂ is hard to solve, but we will see an example for which the

equation (3.4) simplifies significantly. Finally, the diagonalized fluctuation equations take

the following form

¤P̂ − ¨̂
P = −HP P̂ , ¤Q̂ − ¨̂

Q = −HQQ̂. (3.5)

The mass spectrum is given by the eigenvalues of the Schrodinger-like operators HP,Q.

Note that the Q equation is exactly the dilaton fluctuation equation if we neglect mixing

completely [18]. However, here Q is a combination of the dilaton and the gravity fields.

Some general features of the fluctuation spectrum are easy to extract. One can imme-

diately conclude from above that there is no tachyon on the soliton in our effective field

theory for any kind of tachyon potential. Note that (3.5) can be written as

¤P̂ − ¨̂
P = −

[

a
†
P aP + (φ′

2)
2 + q2

]

P̂ , (3.6)

¤Q̂ − ¨̂
Q = −

[

a
†
QaQ + q2

]

Q̂,

where we have defined

aP = ∂ +
φ′′

2

φ′
2

− φ′
1, a

†
P = −∂ +

φ′′
2

φ′
2

− φ′
1, aQ = ∂ + φ′

1, a
†
Q = −∂ + φ′

1. (3.7)

Note that this immediately implies that the expectation value of the hamiltonian HP,Q on

any state is positive definite and thus there are no tachyons in the spectrum.

– 6 –
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Another general feature is that if φ1 becomes large at x → ±∞ we can obtain the

ground state of the Q̂ states. It is simply given by aQQ̂ = 0 condition, giving Q̂ = e−φ1 . If

the dilaton does not go to strong coupling at infinities one can not say anything about the

ground state. However, as was noted in [18] the dilaton diverges at x → ±∞, and thus,

this is always the Q̂ ground state in the cases of the solitons.

4. Quadratic potential

In this section we will discuss a simple example for which the diagonalization problem is

exactly solvable and one can rigorously obtain the spectrum. We begin by setting

φ′′
2 = 0. (4.1)

Without loss of generality we set

φ2(x) = 2x. (4.2)

Then the diagonalization (3.4) is very simple

P̂ = P̄ +
1

4
Q̂ (4.3)

Using the dilaton and tachyon equations of motion we find that the tachyon potential and

the dilaton profile are

V (T ) = 2 − 2q2 − 2T 2, φ1(x, y) = x2 + qy. (4.4)

Note that the physical demand that the potential will vanish for T = 0 implies q2 = 1, but

we won’t restrict to this in what follows. The fluctuation equations are diagonalized

¤P̂ − ¨̂
P = −

[

−P̂ ′′ +

{

4x2 + 6 + q2

}

P̂

]

, (4.5)

¤Q̄ − ¨̄Q = −
[

−Q̄′′ +

{

4x2 − 2 + q2

}

Q̄

]

.

The r.h.s. are simple harmonic oscillator Hamiltonians which give evenly spaced towers of

states with masses squared given by

m2
Q = 4n + q2, m2

P = 4n + 8 + q2. (4.6)

Thus we have two massive fields with mass squared q2, q2+4 and doubly degenerate massive

spectrum 4n + q2 + 8. There is no tachyon.

5. Summary and discussion

In this note we have investigated the spectrum of fluctuations on closed string tachyon

solitons. Our motivation for investigating these objects is to interpret them as sub-critical

strings. We have analyzed the low energy effective action describing the tachyon, dilaton

– 7 –
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Figure 1: An example of quadratic tachyon potential, V (T ), with q = 1 and the dilaton/tachyon

profiles (the dotted line is the tachyon profile, φ2(x), and the solid line is the dilaton profile , φ1(x)).

Note that the tachyon is +∞ at x = +∞, and goes to −∞ at x = −∞, extrapolating between the

two vacua.

and graviton. The main conclusion from the calculations is that there is no tachyonic

instability on the solitons in our low energy models. There are two possible explanations

of this. First, the tachyon might be restored when we take into account the massive fields

in the string spectrum. If the mixing between the massive and the massless fields (or the

tachyon) is strong enough, a negative mass squared fluctuation might re-appear. Another

possible explanation comes from the observation that our final expressions (3.5) describing

the spectrum of the fluctuations do not depend on the number of space-time dimensions.

Our analysis did not assume a specific number of dimensions and thus in particular it should

be suitable for describing a co-dimension one soliton in three dimensions. Following our

general expectations, we interpret this soliton as a 2d string. The tachyon of the 2d string

is massless and this is consistent with our findings. Thus, the low energy analysis might

be suitable only for this case for some reason. It would be very interesting to investigate

all these issues further.
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A. The naive fluctuation spectrum for a quadratic tachyon potential.

In this appendix we will discuss the spectrum on the soliton of a quadratic tachyon potential

without taking into account gravity fluctuations. Note that when we neglect gravity we first

should specify in what frame we are working: the string frame or the Einstein frame. The

fluctuation spectrum is different in the two frames if we neglect gravity, since changing

frames involves non trivial field redefinitions involving metric. In what follows we will
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compute the spectrum in the string frame, where we can do it explicitly. In section 4 we

defined the model:

φ1 = x2, φ2 = 2x, V (T ) = −2T 2, q2 = 1 (A.1)

In the string frame the fluctuations are given by (see [18] for details):

L =

[

−∂2 + ∆ −φ2
′(φ′

1 − ∂)

−φ2
′(φ′

1 + ∂) ∂2 − ∆ − V ′′(T̄ )

]

(A.2)

and ∆ = (φ′
1)

2 − φ′′
1 + q2. Using the above model we obtain:

∆ = 4x2 − 1, φ2
′(φ′

1 + ∂1) = 4

(

x +
1

2
∂

)

. (A.3)

Define

H0 =
1

2

(

−∂2 + 4x2
)

= 2a†a + 1, a = x +
1

2
∂, a† = x − 1

2
∂, [a, a†] = 1. (A.4)

We know that the spectrum of this Hamiltonian is

En = 2n + 1. (A.5)

Further, we note that the mixing term is simply −8a. Thus we can write:

L →
[

2H0 − 1 −4a†

−4a −(2H0 − 5)

]

. (A.6)

First, neglect the mixing and denote the eigenstates of the dilaton as ψd
n, each having

energy

ǫd
n = 2En − 1 = 4n + 1. (A.7)

Denote the tachyon eigenstates as ψt
n, each having energy

ǫt
n = 2En − 5 = 4n − 3. (A.8)

We see that the tachyon has a mass squared −3 while the original tachyon had mass squared

−4. Now remember that

aψt,d
n =

√
nψ

t,d
n−1, a†ψt,d

n =
√

n + 1ψ
t,d
n+1 (A.9)

Next we incorporate the mixing. The lowest state of the dilaton ψd
0 does not mix with

anything and has mass squared ǫ = 1. Further, ψd
n+1 mixes only with ψt

n, and the mixing

matrix takes the following form

Mn =

[

4n + 5 −4
√

n + 1

−4
√

n + 1 −4n + 3

]

≡
[

αn γn

γn βn

]

(A.10)

– 9 –
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Remember that the signs of the tachyon kinetic term and the dilaton kinetic term in the

string frame are opposite and thus to find the spectrum we have to diagonalize the above

matrix while keeping the kinetic term unchanged. In this case it means that we have to

find a matrix U such that

U †

[

1 0

0 −1

]

U =

[

1 0

0 −1

]

→ U =

[

cosh x sinhx

sinhx cosh x

]

(A.11)

We want to solve

Mn = Un

[

an 0

0 bn

]

Un (A.12)

This implies that:

γn = cosh xn sinhxn(an + bn), αn = an + sinh2 xn(an + bn),

βn = bn + sinh2 xn(an + bn)

From here we easily solve

tanh xn =
γn

αn + βn

, an − bn = αn − βn, an + bn =
αn + βn

cosh2 xn

.

Note that these equations imply that if

∣

∣

∣

∣

γn

αn+βn

∣

∣

∣

∣

≤ 1 the fields are real. Otherwise they are

imaginary. We can make them real by multiplying with i. This will flip the sign of the

kinetic terms of both fields. From here the spectrum is easily computed. It consists of two

towers, m2
n = 1+3n and m̃2

n = −2+5n. We have a tachyon and thus we see that the disap-

pearance of the tachyon is indeed due to the mixing with gravity which we neglected here.
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